The Soviet Space Program’s Remarkable Electromechanical Navigation Device

Front-facing view of a Globus navigational device from a Soyuz capsule.
Ken Shirriff

You must see this. Ken Shirriff got his hands on an example of a navigational device from a Soyuz spacecraft and opened it up to see how it worked. Known as a Globus (its proper name is Индикатор Навигационный Космический—roughly, space navigation indicator), it’s an incredibly complicated marvel of gears and cams, an electromechanical analog computer that showed the capsule’s position on a physical globe. The position was predicted—the Globus received no navigational data. Ken’s got lots of photos of the innards at his website. See also his Mastodon thread. He has hopes of getting the thing operational, so keep an eye out for that.

(Based on the presence of NASA tracking sites on the globe, Ken thinks this particular unit was meant for the Apollo-Soyuz program, but I kind of wonder whether that was a function of the 1967 Rescue Agreement between the U.S. and the USSR instead.)

The Mercury capsule had something similar for a while: the Earth Path Indicator. One example sold for nearly $100,000 in 2019.

Lunar Cartography During the Age of Apollo

Writing for Crosscut, Tom Reese memorializes his father, who worked as a cartographer and engineer for NASA’s Aeronautical Chart and Information Center during the Apollo program. Harlan Reese left behind a collection of maps, photos and charts in his garage which, Tom says, still contains “mesmerizing detail and mystery”:

One box has odds and ends of early lunar photography, some of the prints overlain with Dad’s hand-drawn compass points, landing site X’s and handwritten notations. The images were made through large telescopes on Earth, by the Surveyors and Rangers and Lunar Orbiters and early Apollos flying around and over the most promising landing sites. You can also see those smudged fingerprints that likely belong to Dad, mixed with those of many others who used magnifiers and X-Acto knives to carefully slice apart select sections of crater fields. Some small globs of cracked glue remain where they dripped during the process of pasting together the cut pieces to form mosaics of the unexplored landscape.

Some small indentations probably show how the prints were positioned in viewing devices like the extremely precise optical comparator, which helped human eyes interpret the length of shadows inside craters for the first time. These results were coordinated with data about altitude and lunar daylight to provide the most precise terrain measurements possible. Careful airbrushing would smooth over and fill in terra incognita with educated guessing. Finally, this data would be transformed into the precisely printed maps and charts that would help lunar lander pilots to, among other things, second-guess in real time the navigation decisions made by computers of the late 1960s and early 1970s.

Below, a Target of Opprtunity Flight Chart for the Apollo 11 mission:

Apollo 11 Target of Opportunity Flight Chart