Mapping Irrecoverable Carbon

From Noon, Goldstein, Ledezma et al., “Mapping the irrecoverable carbon in Earth’s ecosystems,” Nat Sustain (2021). Creative Commons licence.

A new study published in Nature Sustainability maps the Earth’s reserves of what is called “irrecoverable carbon”—that is to say, those stores of carbon in nature that, if released into the atmosphere, would not be able to be restored in the timeframe required to deal with climate change. These stores include wetlands and old-growth forests, which take longer to replenish.

Irrecoverable carbon represents 20% of the total manageable ecosystem carbon. Globally, 79.0 Gt (57%) of irrecoverable carbon is found in biomass while 60.0 Gt (43%) is in soils. […] The largest and highest-density irrecoverable carbon reserves are in the tropical forests and peatlands of the Amazon (31.5 Gt), the Congo Basin (8.2 Gt) and Insular Southeast Asia (13.1 Gt); the temperate rainforest of northwestern North America (5.0 Gt); the boreal peatlands and associated forests of eastern Canada and western Siberia (12.4 Gt); and mangroves and tidal wetlands globally (4.8 Gt).

The study argues that such reserves should be considered unexploitable; about 48 percent of it is already within protected or indigenous lands. About half the irrecoverable carbon sits on 3.3 percent of the world’s land area. [ScienceNews, GIS Lounge]

Tracking Amazon Fires

Last year saw an uptick in fire activity in the Amazon basin. This year a new tool has been released that aims to help classify the fires being observed. The Amazon Dashboard classifies each fire as a deforestation fire, a savanna fire, a small clearing and agricultural fire, or an understory forest fire, and tracks whether the fire is in a protected or indigenous territory. NASA Earth Observatory:

The fire analysis tool is already bringing new clarity and insight to the 2020 fire season. In July, Brazil announced a 120-day ban on fires in the Amazon rainforest; it was presented as an effort to limit ecological damage from fires this year. However, the NASA-led fire analysis indicates that there has been a proliferation of fires in key deforestation hotspots in the southern Amazon states of Pará, Mato Grosso, and Amazonas.

Previously: Mapping the Amazon Fires.

Mapping the Amazon Fires

Let’s start with the current situation map from Brazil’s own space agency, the Instituto Nacional de Pesquisas Espacias (INPE), which I’m surprised is still online. In July Brazil’s president, Jair Bolsonaro, accused the widely respected agency of lying about the scale of deforestation in the Amazon; INPE’s chief, Ricardo Galvão, was forced out earlier this month after defending the agency. After that, INPE said that fires were up 84 percent over the same period last year. (The ESA, for its part, tracked nearly four times as many fires in August as they did last year.)

Other raw data sources include the Copernicus Atmosphere Monitoring Service (CAMS), fire activity data from which can be viewed here; and MODIS data from NASA’s Terra and Aqua satellites. For a live feed of MODIS data on the Amazon fires, see the MODIS Wildfire Dashboard.

NASA

Meanwhile, NASA’s Earth Observatory posted MODIS imagery of several Amazon fires, and had this curious statement that seemed to minimize the scale of the problem: “As of August 16, 2019, an analysis of NASA satellite data indicated that total fire activity across the Amazon basin this year has been close to the average in comparison to the past 15 years. […] Though activity appears to be above average in the states of Amazonas and Rondônia, it has so far appeared below average in Mato Grosso and Pará, according to estimates from the Global Fire Emissions Database, a research project that compiles and analyzes NASA data.”

A subsequent NASA Earth Observatory post seems to contradict the one I mentioned earlier, pointing to “a noticeable increase in large, intense, and persistent fires burning along major roads in the central Brazilian Amazon” which “are more consistent with land clearing than with regional drought” and noted fire detections “higher across the Brazilian Amazon” since 2010.

Contextualizing the amount of fires seems to be a recurring theme in the reporting: the number of fires are up sharply over last year, but close to the average when taking a longer view. It’s helped a lot of bad and insincere actors make it harder to get to the heart of what’s going on over there. They can’t, after all, deny the satellite imagery or the remote sensing: we can see the fires. We can detect the emissions of smoke, carbon dioxide and carbon monoxide (1, 2, 3). We can map them. And those maps can help us understand what’s going on.

On the NGO front, InfoAmazonia has produced the above map comparing fires over the last 24 hours with historical fire data. (They have other maps on this subject as well.)

Note, too, the reference above to burning along major roads. Tim Wallace crunches MODIS date from 2012 onward and teases out some patterns in the fires.

The New York Times

And the New York Times, where Tim used to work, has a map correlating the position of the current Amazon fires along the edges of past deforestation. The Times also has maps showing maps on a month-by-month basis and comparing August 2019 with the August average over the past decade.

[CityLab, Maps Mania]